Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation
نویسندگان
چکیده
We uncover connections between maximum likelihood estimation in statistics and norm minimization over a group orbit invariant theory. focus on Gaussian transformation families, which include matrix normal models graphical given by transitive directed acyclic graphs. use stability under actions to characterize boundedness of the likelihood, existence uniqueness estimate. Our approach reveals promising consequences interplay theory statistics. In particular, existing scaling algorithms from can be used theory, vice versa.
منابع مشابه
A comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملKullback Proximal Algorithms for Maximum Likelihood Estimation
Accelerated algorithms for maximum likelihood image reconstruction are essential for emerging applications such as 3D tomography, dynamic tomographic imaging, and other high dimensional inverse problems. In this paper, we introduce and analyze a class of fast and stable sequential optimization methods for computing maximum likelihood estimates and study its convergence properties. These methods...
متن کاملOn Optimization Algorithms for Maximum Likelihood Estimation
Maximum likelihood estimation (MLE) is one of the most popular technique in econometric and other statistical applications due to its strong theoretical appeal, but can lead to numerical issues when the underlying optimization problem is solved. We examine in this paper a range of trust region and line search algorithms and focus on the impact that the approximation of the Hessian matrix has on...
متن کاملPartitioned algorithms for maximum likelihood and other non-linear estimation
There are a variety of methods in the literature which seek to make iterative estimation algorithms more manageable by breaking the iterations into a greater number of simpler or faster steps. Those algorithms which deal at each step with a proper subset of the parameters are called in this paper partitioned algorithms. Partitioned algorithms in effect replace the original estimation problem wi...
متن کاملMaximum likelihood difference scaling.
We present a stochastic model of suprathreshold perceptual differences based on difference measurement. We develop a maximum likelihood difference scaling (MLDS) method for estimating its parameters and evaluate the reliability and distributional robustness of the fitting method. We also describe a method for testing whether the difference measurement model is appropriate as a description of hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Algebra and Geometry
سال: 2021
ISSN: ['2470-6566']
DOI: https://doi.org/10.1137/20m1328932